PRINCIPLES OF ANALYSIS
TOPIC VI: OPEN AND CLOSED SETS

PAUL L. BAILEY

ABSTRACT. We define open sets, closed sets, and accumulation points, and
prove a third version of the Bolzano-Weierstrass Theorem wrapped in this
terminology. We define connected and compact sets, and prove the Heine-
Borel Theorem.

1. OPEN SETS

Definition 1. A subset U C R is called open if
YVueU3Je>0 3 |z—ul<e=zel.
This definition can be restated in terms of neighborhoods.

Definition 2. Let € R. An e-neighborhood of x is an open interval of the form
(x — €, +¢€), where e > 0.

More generally, a neighborhood of x is a subset () C R such that there exists
e >0 with (x —e,x +¢) C Q.

So, a set U C R is open if every point in U is surrounded by an e-neighborhood
which is completely contained in U.

If C is a collection of subsets of a given set X, then the union and intersection
of € are

UC={x e X |z eC for some C € C};
NC={zeX|zeCforal C e C}.

Proposition 1. Let T denote the collection of all open subsets of R. Then
(a) €T andReT;
(b) if O C T, then UO € T;
(c) if O C T is finite, then NO € 7.

Proof.

(a) The condition for openness is vacuously satisfied by the empty set. For R,
consider € R. Then (x — 1,2 4+ 1) C R. Thus R is open.

(b) Let O C T; that is, O is a collection of open sets. Select x € UQ. Then z € U
for some U € O. Since U is open, there exists € > 0 such that (x — e,z +¢) C U.
Since U C U0, it follows that (z — €,z + €) C UO. Thus UQ is open.

(c) Let O C T be a finite collection of open sets. Since O is finite, we may write
O ={Uy,Us,...,U,}, where U; is an open set for i = 1,...,n. If NO is empty, we
are done, so assume that it nonempty, and select x € NO. For each i, there exists
€; such that (x —€;,x +¢€;) C U;. Set € = min{ey,...,€e,}. Then (x —e,z+€) C NO.
Thus NO is open. ([l
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Proposition 2. Let O be a collection of open intervals. If NO is nonempty, then
UO is an open interval.

Proof. By hypothesis, there exists x € NO. Write O as a family of sets:
0 ={0, | ac A},

where A is an indexing set. Now O, is an open interval; we label its endpoints by
letting Oy = (aq,ba), where aq, b, € RU{£oo}. Set

a=1inf{a, |a € A} and b=sup{b,|a € A}.

Claim: UQ = (a,b). We prove both directions of containment.

(C) Let y € UO. Then y € O, for some . Thus a < a, < y < by < b, s0
y € (a,b).

(D) Let y € (a,b). Assume that y < x; the proof for y > x is analogous. Now
a < y, and since a = inf{a, | @ € A}, so there exists & € A such that a < a, < y.
Also € Oy 80 aq <y < & < by; thus y € (aq,bs) = On, and y € UO. O

Proposition 3. Let U C R. Then U is open if and only if there exists a collection
O of disjoint open intervals such that U = UQ.

Proof. Let a € U, and set O, = {O C U | O is an open interval and a € O}. Set
0O, = UQ,. By the previous proposition, O, is an open interval.

Now suppose that a,b € U and suppose that O, N Oy # &. Then there exists
c € 0,N0y, 500 =0,UOy is an open interval by the Proposition 2. Also a € O,
so O € O, so O C O,. Similarly, O C Op. This shows that O, = Oy.

Let O = {0, | a € U}. This is a collection of disjoint open intervals contained
in U, and every element of U is in one of these open intervals, so U = UQO. (]

2. CLOSED SETS
Definition 3. A subset F' C R is closed if its complement R \ F' is open.

We may characterize the collection F of closed subsets of R in a manner anal-
ogous to our characterization of T, the collect of open subsets of R, by the use of
DeMorgan’s Laws.

Proposition 4. (DeMorgan’s Laws)
Let X be a set and let {A, | a € I} be a family of subsets of X. Then

ﬂ(X\Aa):X\<UAa);

acl a€cl
U(X\Aa):X\<mAa>.
acl acl

Proposition 5. Let F denote the collection of all closed subsets of R.
(a) 9€eF andRe F;
(b) ifCC T, thenNC e F;
(c) if € C F is finite, then UC € T.

Proof. Apply DeMorgan’s Laws to Proposition 1. O



Proposition 6. Let FF C R. Then F is closed if and only if every sequence in F
which converges in R has a limit in F.

Proof. We prove both directions.

(=) Suppose that F is closed, and let (a,) be a sequence in F' which converges
to a € R. We wish to show that p € F. Suppose not; then p € R~ F. This set
is open, so there exists € > 0 such that (p — ¢,p+¢€¢) C R~ F. Thus there exists
N € N such that a, € R~ F for all n > N. This contradicts that the sequence is
in F.

(<) Suppose that F' is not closed; we wish to construct a sequence in F' which
converges to a point not in F. Since F' is not closed, then R \ F' is not open. This
means that there exists a point z € R \. F' such that for every ¢ > 0, (x — €,z + €)
is not a subset of R\ F’; that is, (z — €,z + ¢) contains a point in F. For n € N| let
zn € (x— 2,2+ 1)NF. Then (z,) is a sequence in F, but limy, ooz, =z ¢ F. O

3. ACCUMULATION POINTS

Definition 4. Let S C R and let x € R. We say that = is an accumulation point
of S if for every € > 0 there exists s € S such that 0 < |s — z| < e.

This definition may be restated in terms of deleted neighborhoods.

Definition 5. A deleted neighborhood of x € R is a set of the form Q \ {z}, where
Q is a neighborhood of z.

Thus « is an accumulation point of S if every deleted neighborhood of x contains
an element of S. We note that an accumulation point of a set S may or may not
be an element of S.

Proposition 7. Let FF C R. Then F is closed if and only if F' contains all of its
accumulation points.

Proof. Prove both directions.

(=) Suppose F is closed, and let z € R. Suppose = ¢ F'; we show that z is
not an accumulation point of F. Since x € F, then x € R ~\ F, which is open.
Therefore there exists € > 0 such that U = (x — e,z +€) C R~ F. Then U \ {z}
is a deleted neighborhood of x whose intersection with F' is empty, and x is not an
accumulation point of F'.

(<) Suppose F' contains all of its accumulation points. We show that the com-
plement of F' is open. Let x € R~ F. Then x is not an accumulation point of
F. Then there exists a deleted neighborhood U of x such that U C R ~ F. This
neighborhood contains a deleted epsilon neighborhood, say (z—e€,z+¢€)~{z}. This
set is in the complement of F', and since x ¢ F, we have (v — e,z +¢) C R\ F.
Thus R ~\ F' is open, so F' is closed. O



Theorem 1. (Bolzano-Weierstrass Theorem Version IIT)
FEvery bounded infinite set of real numbers has an accumulation point.

Proof. Let S be a bounded infinite set. Since S is infinite, there exists an injective
function s : N — S; view this as a sequence (s,). This sequence is bounded, and
consequently has a convergent subsequence; say (s,, ) converges to ¢ € R. Suppose
that ¢ = sy, for some M € N; then, since (s,) is injective, n > M = s,, # s. If no
such M exists, let M = 0.

We claim that ¢ is an accumulation point of S. Let € > 0; to show that ¢ is an
accumulation point of S, we need to find an element of S \ {g} within € of q. But
since (sy, ) converges to ¢, there exists N € N such that k > N = |s,, —¢| < e
Let K = max{M,N} +1 and let s = s,,,,. Then s € S, s # ¢, and |s — ¢| < e.
Thus ¢ is an accumulation point of S. O

4. CONNECTED SETS

Definition 6. A subset A C R is disconnected if there exist disjoint open sets
Ui,Us C R with ANU; # @ and ANUs # @ such that A C (U} UUs). Otherwise,
we say that A is connected.

Intuitively, we imagine that the connected sets are intervals. Before we show
this, let us characterize intervals in a a variety of ways.

Proposition 8. Let A C R contain at least two elements. The following conditions
on A are equivalent:

(a) a1,a2 € A and a1 < ag implies [a1,as] C A;

(b) (inf A,sup A) C A;

(¢) A is an interval.

Proof. We show that (a) = (b) = (c) = (a). We will assume that A is bounded;
minor adjustments will handle the cases where inf A = —oo or sup A = cc.

(a) = (b) Suppose that for every aj,as € A with a1 < ag, we have [a1,a2] C A.
Let ¢ € (inf A,sup A), so that inf A < ¢ < sup A. Then there exists a; € A such
that inf A < ay < x; also, there exists as € A such that ¢ < as < sup A. Now
¢ € a1, az2] and [ay,az] C A; thus ¢ € A.

(b) = (c) Suppose that (inf A,sup A) C A. By definition of supremum and
infimum, this implies that A \ (inf A,sup A) C {inf 4, sup A}.

We wish to show that A is an interval. But a bounded interval is a set of the form
{reR|a<z<blUE, where a,b € R, a < b, and E is a subset of {a,b}. If we
let @ = inf A and b = sup A, we have A = (a,b) U E, where E = A~ (a,b) C {a,b}.

(c) = (a) Suppose that A is a bounded interval; then there exist a,b € R with
a<band A={reR|a<z<b}UE, where E C {a,b}. Let aj,a2 € A with
a1 < ag, and let ¢ € [ay, as].

We wish to show that ¢ € A. If ¢ = a; or ¢ = as, we are done, so assume ¢ # a;
and ¢ # as. Thena <a; <c<ay<b,socef{reR|a<c<b}CA O



Proposition 9. Let A C R contain at least two elements. Then A is connected if
and only if A is an interval.

Proof. We prove both directions of the implication.

(=) Suppose that A is not an interval. Then there exist a;,as € A with a; < a9
such that [a1, as] is not contained in A, so there exists ¢ € [ay, az] such that ¢ ¢ A.
Set Uy = (—00,¢) and Uy = (¢, 00); then a; € Uy, as € Uz, and A C Uy U Us. Thus
A is disconnected.

(<) Suppose that A is an interval. Then for every aj,as € A with a1 < ag, we
have [a1, as] C A.

Let U; and U; be open sets with ANU; # @, ANUs # &, and A C Uy UUs.
We wish to show that Uy NUs # @.

Let a; € Uy and as € Us; without loss of generality, assume that a; < as. Let
¢ =supUj N a1, as]. Clearly c € [a1, as], so either ¢ € U; or ¢ € Us.

Case 1: cel;

Since Up is open, there exists ¢ > 0 such that (¢ — e,c +¢€) C Uy. Let d =
min{§, *3-}; then ¢ +d is also in U; and in [a1, az]. By definition of ¢, we must
have d = 0, which implies that “5*2 = 0, which implies that ¢ = as. Since ay € Uy,
we have ¢ € Uy N Us.

Case 2: ce U;

Since Us is open, there exists € > 0 such that (c—e¢, c+¢€) C Us. But by the definition
of ¢, there exists b € Uy N [a1,aq] such that b € (¢ —e,¢) CUz,s0bce Uy NU;. O




5. COMPACT SETS

Let A C R. A cover of A is a collection € C P(R) of subsets of R such that
A cCUC.

Let C be a cover of A C R. We say that C is an open cover if every member
U € C is an open subset of R. We say that C is a finite cover if C is a finite set.

Note that the modifier open refers to the sets inside C, whereas the modifier
finite refers to the collection C itself.

A subcover of C is a subset D C € such that A C UD.

We say that A is compact if every open cover of A has a finite subcover.

Example 1. Let A=Z. Let I, = (n— 1,n+ 3). Let € = {I, | n € Z}. Then €
is an open cover of Z with no finite subcover. Thus Z is not compact.

Example 2. Let A = (0,1). Let I,, = (0,1 — 1). Let € = {I,, | n € N}. Then € is

n
an open cover of (0,1) with no finite subcover. Thus (0, 1) is not compact.

Proposition 10. Let A = {aj,...,a,} be a finite set. Then A is compact.

Proof. Let C be an open cover of A. Then for each a; € A, there exists and open set
U; € € such that a; € U;. Then A C U, U;, and {Uy,...,U,} is a finite subcover
of C. Thus A is compact. O

Proposition 11. Let a,b € R with a < b. Then the closed interval [a,b] C R is
compact.

Proof. Let C be an open cover of [a, b].
Let z € [a,b] and let U, € € be an open set which contains z. Then there exists
€, > 0 such that (z — €z, + €;) C U,. Let

B = {x € [a,b] | [a,x] can be covered by a finite subcover of C}.

Note that B is nonempty, since the closed interval [a,a + %] C U,, and {U,} is a
finite subcover of C, so for example a + % € B.

Let z = sup B; clearly a + & < z < b. We claim that z € B, and that z = b.
To see this, let € = min{e.,z —a}. Then z — § € B. Let D be a finite subcover
of € which covers [a,z — §]. Then D U {U.} covers [a, 2], so z € B. Now suppose
that z < b, and set § = min{e, 2 — b}. Then z < z+ 2 < b, and D U {U.} covers
[,z + £]; since 2 + § € [a, b], this contradicts the definition of z. Thus z = b. This
completes the proof. O

Proposition 12. Let A C R be compact and let F C A be closed. Then F is
compact.

Proof. Let C be an open cover of F. Let U = R ~\ F; since F' is closed, U is open.
Let B = CU{U}. Now B is an open cover of A. Since A is compact, let U be a
finite subcover of A. Since F' C A, then U is also a finite open cover of F. Let
V =U~N{U}; now V is still a finite open cover of F', and V is a subcover of C. Thus
F' is compact. (Il



Theorem 2. (Heine-Borel Theorem)
Let A C R. Then A is compact if and only if A is closed and bounded.

Proof. We prove both directions.

(=) Suppose that A is compact; we wish to show that A is closed and bounded.

Cover A with sets of the form (—n,n), for n € N. Since A is compact, there
exists a finite subcover. This subcover contains an interval of maximum length, say
(=M, M), and clearly A C (=M, M). Thus A C [-M, M], and A is bounded.

To show that A is closed, we show that its complement is open. Let B = R\ A.
Let b € B. For each point a € A, set ¢, = |b—al/2, I, = (a — €,a + ¢€), and
Jo=(b—e€,b+e). Let I={I, |a € A}. Then J is an open cover of A, and so it has
a finite subcover {I,,,...,1,,}. The open set U ;I,, contains A and is disjoint
from the set Ni_;.J,,, which is also open and contains b. Thus B is open.

(<) Suppose that A is closed and bounded; we wish to show that A is compact.
Since A is bounded, there exists M > 0 such that A C [-M, M]. The set [-M, M]
is a closed interval, and so it is compact by Proposition 11. Thus A is a closed
subset of a compact set, and therefore is compact by Proposition 12. ([l

Proposition 13. Let K be a compact set. Then inf K € K and sup K € K.

Proof. Since K is bounded, then sup K exists as a real number, say b = sup K.
Suppose b ¢ K; then {(—oco,b — 1) | n € N} is an open cover of K with no finite
subcover, contradicting that K is compact. Thus b € K. Similarly, inf K € K. 0O

6. PROBLEMS

Problem 1. Let (a,) be a bounded sequence in R and let
A ={q € R|qis a cluster point of (ay,)}.

(a) Show that A is closed.
(b) Show that A is bounded.
(c) Show that A is compact.
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