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TOPIC VI: OPEN AND CLOSED SETS

PAUL L. BAILEY

Abstract. We define open sets, closed sets, and accumulation points, and

prove a third version of the Bolzano-Weierstrass Theorem wrapped in this

terminology. We define connected and compact sets, and prove the Heine-
Borel Theorem.

1. Open Sets

Definition 1. A subset U ⊂ R is called open if

∀u ∈ U ∃ε > 0 3 |x− u| < ε ⇒ x ∈ U.

This definition can be restated in terms of neighborhoods.

Definition 2. Let x ∈ R. An ε-neighborhood of x is an open interval of the form
(x− ε, x + ε), where ε > 0.

More generally, a neighborhood of x is a subset Q ⊂ R such that there exists
ε > 0 with (x− ε, x + ε) ⊂ Q.

So, a set U ⊂ R is open if every point in U is surrounded by an ε-neighborhood
which is completely contained in U .

If C is a collection of subsets of a given set X, then the union and intersection
of C are

∪C = {x ∈ X | x ∈ C for some C ∈ C};
∩C = {x ∈ X | x ∈ C for all C ∈ C}.

Proposition 1. Let T denote the collection of all open subsets of R. Then
(a) ∅ ∈ T and R ∈ T;
(b) if O ⊂ T, then ∪O ∈ T;
(c) if O ⊂ T is finite, then ∩O ∈ T.

Proof.
(a) The condition for openness is vacuously satisfied by the empty set. For R,

consider x ∈ R. Then (x− 1, x + 1) ⊂ R. Thus R is open.
(b) Let O ⊂ T; that is, O is a collection of open sets. Select x ∈ ∪O. Then x ∈ U

for some U ∈ O. Since U is open, there exists ε > 0 such that (x − ε, x + ε) ⊂ U .
Since U ⊂ ∪O, it follows that (x− ε, x + ε) ⊂ ∪O. Thus ∪O is open.

(c) Let O ⊂ T be a finite collection of open sets. Since O is finite, we may write
O = {U1, U2, . . . , Un}, where Ui is an open set for i = 1, . . . , n. If ∩O is empty, we
are done, so assume that it nonempty, and select x ∈ ∩O. For each i, there exists
εi such that (x− εi, x+ εi) ⊂ Ui. Set ε = min{ε1, . . . , εn}. Then (x− ε, x+ ε) ⊂ ∩O.
Thus ∩O is open. �
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Proposition 2. Let O be a collection of open intervals. If ∩O is nonempty, then
∪O is an open interval.

Proof. By hypothesis, there exists x ∈ ∩O. Write O as a family of sets:

O = {Oα | α ∈ A},
where A is an indexing set. Now Oα is an open interval; we label its endpoints by
letting Oα = (aα, bα), where aα, bα ∈ R ∪ {±∞}. Set

a = inf{aα | α ∈ A} and b = sup{bα | α ∈ A}.
Claim: ∪O = (a, b). We prove both directions of containment.
(⊂) Let y ∈ ∪O. Then y ∈ Oα for some α. Thus a ≤ aα < y < bα ≤ b, so

y ∈ (a, b).
(⊃) Let y ∈ (a, b). Assume that y ≤ x; the proof for y ≥ x is analogous. Now

a < y, and since a = inf{aα | α ∈ A}, so there exists α ∈ A such that a ≤ aα < y.
Also x ∈ Oα so aα < y ≤ x < bα; thus y ∈ (aα, bα) = Oα, and y ∈ ∪O. �

Proposition 3. Let U ⊂ R. Then U is open if and only if there exists a collection
O of disjoint open intervals such that U = ∪O.

Proof. Let a ∈ U , and set Oa = {O ⊂ U | O is an open interval and a ∈ O}. Set
Oa = ∪Oa. By the previous proposition, Oa is an open interval.

Now suppose that a, b ∈ U and suppose that Oa ∩ Ob 6= ∅. Then there exists
c ∈ Oa ∩Ob, so O = Oa ∪Ob is an open interval by the Proposition 2. Also a ∈ O,
so O ∈ Oa, so O ⊂ Oa. Similarly, O ⊂ Ob. This shows that Oa = Ob.

Let O = {Oa | a ∈ U}. This is a collection of disjoint open intervals contained
in U , and every element of U is in one of these open intervals, so U = ∪O. �

2. Closed Sets

Definition 3. A subset F ⊂ R is closed if its complement R r F is open.

We may characterize the collection F of closed subsets of R in a manner anal-
ogous to our characterization of T, the collect of open subsets of R, by the use of
DeMorgan’s Laws.

Proposition 4. (DeMorgan’s Laws)
Let X be a set and let {Aα | α ∈ I} be a family of subsets of X. Then⋂

α∈I

(X r Aα) = X r
( ⋃

α∈I

Aα

)
;

⋃
α∈I

(X r Aα) = X r
( ⋂

α∈I

Aα

)
.

Proposition 5. Let F denote the collection of all closed subsets of R.
(a) ∅ ∈ F and R ∈ F;
(b) if C ⊂ F, then ∩C ∈ F;
(c) if C ⊂ F is finite, then ∪C ∈ T.

Proof. Apply DeMorgan’s Laws to Proposition 1. �
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Proposition 6. Let F ⊂ R. Then F is closed if and only if every sequence in F
which converges in R has a limit in F .

Proof. We prove both directions.
(⇒) Suppose that F is closed, and let (an) be a sequence in F which converges

to a ∈ R. We wish to show that p ∈ F . Suppose not; then p ∈ R r F . This set
is open, so there exists ε > 0 such that (p − ε, p + ε) ⊂ R r F . Thus there exists
N ∈ N such that an ∈ R r F for all n ≥ N . This contradicts that the sequence is
in F .

(⇐) Suppose that F is not closed; we wish to construct a sequence in F which
converges to a point not in F . Since F is not closed, then R r F is not open. This
means that there exists a point x ∈ R r F such that for every ε > 0, (x− ε, x + ε)
is not a subset of R r F ; that is, (x− ε, x + ε) contains a point in F . For n ∈ N, let
xn ∈ (x− 1

n , x+ 1
n )∩F . Then (xn) is a sequence in F , but limn→∞ xn = x /∈ F . �

3. Accumulation Points

Definition 4. Let S ⊂ R and let x ∈ R. We say that x is an accumulation point
of S if for every ε > 0 there exists s ∈ S such that 0 < |s− x| < ε.

This definition may be restated in terms of deleted neighborhoods.

Definition 5. A deleted neighborhood of x ∈ R is a set of the form Q r {x}, where
Q is a neighborhood of x.

Thus x is an accumulation point of S if every deleted neighborhood of x contains
an element of S. We note that an accumulation point of a set S may or may not
be an element of S.

Proposition 7. Let F ⊂ R. Then F is closed if and only if F contains all of its
accumulation points.

Proof. Prove both directions.
(⇒) Suppose F is closed, and let x ∈ R. Suppose x /∈ F ; we show that x is

not an accumulation point of F . Since x ∈ F , then x ∈ R r F , which is open.
Therefore there exists ε > 0 such that U = (x− ε, x + ε) ⊂ R r F . Then U r {x}
is a deleted neighborhood of x whose intersection with F is empty, and x is not an
accumulation point of F .

(⇐) Suppose F contains all of its accumulation points. We show that the com-
plement of F is open. Let x ∈ R r F . Then x is not an accumulation point of
F . Then there exists a deleted neighborhood U of x such that U ⊂ R r F . This
neighborhood contains a deleted epsilon neighborhood, say (x−ε, x+ε)r{x}. This
set is in the complement of F , and since x /∈ F , we have (x − ε, x + ε) ⊂ R r F .
Thus R r F is open, so F is closed. �
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Theorem 1. (Bolzano-Weierstrass Theorem Version III)
Every bounded infinite set of real numbers has an accumulation point.

Proof. Let S be a bounded infinite set. Since S is infinite, there exists an injective
function s : N → S; view this as a sequence (sn). This sequence is bounded, and
consequently has a convergent subsequence; say (snk

) converges to q ∈ R. Suppose
that q = snM

for some M ∈ N; then, since (sn) is injective, n > M ⇒ sn 6= s. If no
such M exists, let M = 0.

We claim that q is an accumulation point of S. Let ε > 0; to show that q is an
accumulation point of S, we need to find an element of S r {q} within ε of q. But
since (snk

) converges to q, there exists N ∈ N such that k ≥ N ⇒ |snk
− q| < ε.

Let K = max{M,N} + 1 and let s = snK
. Then s ∈ S, s 6= q, and |s − q| < ε.

Thus q is an accumulation point of S. �

4. Connected Sets

Definition 6. A subset A ⊂ R is disconnected if there exist disjoint open sets
U1, U2 ⊂ R with A∩U1 6= ∅ and A∩U2 6= ∅ such that A ⊂ (U1 ∪U2). Otherwise,
we say that A is connected.

Intuitively, we imagine that the connected sets are intervals. Before we show
this, let us characterize intervals in a a variety of ways.

Proposition 8. Let A ⊂ R contain at least two elements. The following conditions
on A are equivalent:

(a) a1, a2 ∈ A and a1 < a2 implies [a1, a2] ⊂ A;
(b) (inf A, supA) ⊂ A;
(c) A is an interval.

Proof. We show that (a) ⇒ (b) ⇒ (c) ⇒ (a). We will assume that A is bounded;
minor adjustments will handle the cases where inf A = −∞ or supA = ∞.

(a) ⇒ (b) Suppose that for every a1, a2 ∈ A with a1 < a2, we have [a1, a2] ⊂ A.
Let c ∈ (inf A, supA), so that inf A < c < supA. Then there exists a1 ∈ A such
that inf A ≤ a1 < x; also, there exists a2 ∈ A such that c < a2 < supA. Now
c ∈ [a1, a2] and [a1, a2] ⊂ A; thus c ∈ A.

(b) ⇒ (c) Suppose that (inf A, supA) ⊂ A. By definition of supremum and
infimum, this implies that A r (inf A, supA) ⊂ {inf A, supA}.

We wish to show that A is an interval. But a bounded interval is a set of the form
{x ∈ R | a < x < b} ∪ E, where a, b ∈ R, a < b, and E is a subset of {a, b}. If we
let a = inf A and b = sup A, we have A = (a, b)∪E, where E = A r (a, b) ⊂ {a, b}.

(c) ⇒ (a) Suppose that A is a bounded interval; then there exist a, b ∈ R with
a < b and A = {x ∈ R | a < x < b} ∪ E, where E ⊂ {a, b}. Let a1, a2 ∈ A with
a1 < a2, and let c ∈ [a1, a2].

We wish to show that c ∈ A. If c = a1 or c = a2, we are done, so assume c 6= a1

and c 6= a2. Then a ≤ a1 < c < a2 ≤ b, so c ∈ {x ∈ R | a < c < b} ⊂ A. �
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Proposition 9. Let A ⊂ R contain at least two elements. Then A is connected if
and only if A is an interval.

Proof. We prove both directions of the implication.
(⇒) Suppose that A is not an interval. Then there exist a1, a2 ∈ A with a1 < a2

such that [a1, a2] is not contained in A, so there exists c ∈ [a1, a2] such that c /∈ A.
Set U1 = (−∞, c) and U2 = (c,∞); then a1 ∈ U1, a2 ∈ U2, and A ⊂ U1 ∪U2. Thus
A is disconnected.

(⇐) Suppose that A is an interval. Then for every a1, a2 ∈ A with a1 < a2, we
have [a1, a2] ⊂ A.

Let U1 and U2 be open sets with A ∩ U1 6= ∅, A ∩ U2 6= ∅, and A ⊂ U1 ∪ U2.
We wish to show that U1 ∩ U2 6= ∅.

Let a1 ∈ U1 and a2 ∈ U2; without loss of generality, assume that a1 < a2. Let
c = supU1 ∩ [a1, a2]. Clearly c ∈ [a1, a2], so either c ∈ U1 or c ∈ U2.

Case 1: c ∈ U1

Since U1 is open, there exists ε > 0 such that (c − ε, c + ε) ⊂ U1. Let d =
min{ ε

2 , a2−c
2 }; then c + d is also in U1 and in [a1, a2]. By definition of c, we must

have d = 0, which implies that c−a2
2 = 0, which implies that c = a2. Since a2 ∈ U2,

we have c ∈ U1 ∩ U2.
Case 2: c ∈ U2

Since U2 is open, there exists ε > 0 such that (c−ε, c+ε) ⊂ U2. But by the definition
of c, there exists b ∈ U1 ∩ [a1, a2] such that b ∈ (c− ε, c) ⊂ U2, so b ∈ U1 ∩ U2. �
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5. Compact Sets

Let A ⊂ R. A cover of A is a collection C ⊂ P(R) of subsets of R such that
A ⊂ ∪C.

Let C be a cover of A ⊂ R. We say that C is an open cover if every member
U ∈ C is an open subset of R. We say that C is a finite cover if C is a finite set.

Note that the modifier open refers to the sets inside C, whereas the modifier
finite refers to the collection C itself.

A subcover of C is a subset D ⊂ C such that A ⊂ ∪D.
We say that A is compact if every open cover of A has a finite subcover.

Example 1. Let A = Z. Let In = (n − 1
3 , n + 1

3 ). Let C = {In | n ∈ Z}. Then C

is an open cover of Z with no finite subcover. Thus Z is not compact.

Example 2. Let A = (0, 1). Let In = (0, 1− 1
n ). Let C = {In | n ∈ N}. Then C is

an open cover of (0, 1) with no finite subcover. Thus (0, 1) is not compact.

Proposition 10. Let A = {a1, . . . , an} be a finite set. Then A is compact.

Proof. Let C be an open cover of A. Then for each ai ∈ A, there exists and open set
Ui ∈ C such that ai ∈ Ui. Then A ⊂ ∪n

i=1Ui, and {U1, . . . , Un} is a finite subcover
of C. Thus A is compact. �

Proposition 11. Let a, b ∈ R with a < b. Then the closed interval [a, b] ⊂ R is
compact.

Proof. Let C be an open cover of [a, b].
Let x ∈ [a, b] and let Ux ∈ C be an open set which contains x. Then there exists

εx > 0 such that (x− εx, x + εx) ⊂ Ux. Let

B = {x ∈ [a, b] | [a, x] can be covered by a finite subcover of C}.
Note that B is nonempty, since the closed interval [a, a + εa

2 ] ⊂ Ua, and {Ua} is a
finite subcover of C, so for example a + εa

2 ∈ B.
Let z = supB; clearly a + εa

2 ≤ z ≤ b. We claim that z ∈ B, and that z = b.
To see this, let ε = min{εz, z − a}. Then z − ε

2 ∈ B. Let D be a finite subcover
of C which covers [a, z − ε

2 ]. Then D ∪ {Uz} covers [a, z], so z ∈ B. Now suppose
that z < b, and set δ = min{ε, z − b}. Then z < z + δ

2 < b, and D ∪ {Uz} covers
[a, z + δ

2 ]; since z + δ
2 ∈ [a, b], this contradicts the definition of z. Thus z = b. This

completes the proof. �

Proposition 12. Let A ⊂ R be compact and let F ⊂ A be closed. Then F is
compact.

Proof. Let C be an open cover of F . Let U = R r F ; since F is closed, U is open.
Let B = C ∪ {U}. Now B is an open cover of A. Since A is compact, let U be a
finite subcover of A. Since F ⊂ A, then U is also a finite open cover of F . Let
V = Ur{U}; now V is still a finite open cover of F , and V is a subcover of C. Thus
F is compact. �
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Theorem 2. (Heine-Borel Theorem)
Let A ⊂ R. Then A is compact if and only if A is closed and bounded.

Proof. We prove both directions.
(⇒) Suppose that A is compact; we wish to show that A is closed and bounded.
Cover A with sets of the form (−n, n), for n ∈ N. Since A is compact, there

exists a finite subcover. This subcover contains an interval of maximum length, say
(−M,M), and clearly A ⊂ (−M,M). Thus A ⊂ [−M,M ], and A is bounded.

To show that A is closed, we show that its complement is open. Let B = R r A.
Let b ∈ B. For each point a ∈ A, set εa = |b − a|/2, Ia = (a − ε, a + ε), and
Ja = (b− ε, b+ ε). Let I = {Ia | a ∈ A}. Then I is an open cover of A, and so it has
a finite subcover {Ia1 , . . . , Ian

}. The open set ∪n
i=1Iai

contains A and is disjoint
from the set ∩n

i=1Jai
, which is also open and contains b. Thus B is open.

(⇐) Suppose that A is closed and bounded; we wish to show that A is compact.
Since A is bounded, there exists M > 0 such that A ⊂ [−M,M ]. The set [−M,M ]
is a closed interval, and so it is compact by Proposition 11. Thus A is a closed
subset of a compact set, and therefore is compact by Proposition 12. �

Proposition 13. Let K be a compact set. Then inf K ∈ K and supK ∈ K.

Proof. Since K is bounded, then supK exists as a real number, say b = supK.
Suppose b /∈ K; then {(−∞, b − 1

n ) | n ∈ N} is an open cover of K with no finite
subcover, contradicting that K is compact. Thus b ∈ K. Similarly, inf K ∈ K. �

6. Problems

Problem 1. Let (an) be a bounded sequence in R and let

Λ = {q ∈ R | q is a cluster point of (an)}.
(a) Show that Λ is closed.
(b) Show that Λ is bounded.
(c) Show that Λ is compact.
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